Machine Learning: aprender de forma autónoma

Com o movimento de transformação digital, o ramo de Machine Learning foi ganhando cada vez mais tração. Primeiramente assente numa teoria que advogava que os computadores poderiam aprender a efetuar tarefas específicas e a reconhecer padrões, o desafio colocado era simples: verificar se os computadores poderiam aprender com os dados.

Machine Learning proporciona aos sistemas a possibilidade de aprender e melhorar com a experiência, sem necessidade de haver uma programação específica para esse efeito. O foco é no desenvolvimento de programas que utilizem os dados disponíveis e consigam aprender por si. Os modelos matemáticos são construídos e alimentados com – potencialmente – grandes volumes de dados. Os algoritmos aprendem a identificar padrões e a retirar insights que são aplicados quando se processa nova informação. Este termo surgiu em 1959, quando o pioneiro Arthur Samuel definiu Machine Learning como a capacidade de um computador aprender sem ser explicitamente programado para o fazer.

Este processo de aprendizagem começa com processamento de dados, tentando identificar padrões. O objetivo principal é de permitir que os computadores aprendam autonomamente sem assistência humana, usando esse conhecimento para tomar decisões em concordância com o que foi “aprendido”. Embora os algoritmos de machine learning tenham estado presentes durante muito tempo, a aplicação destes cálculos matemáticos a Big Data, cada vez com maior fluidez, é um desenvolvimento mais recente. No entanto, de acordo com relatórios da indústria, o que se considera hoje em dia ser um crescimento tão exponencial nesta área, daqui a 50 anos será apenas visto como “baby steps”. É esperado que este ramo de IA cresça de forma muito acelerada nos próximos tempos.

Exemplos de Machine Learning

O interesse recorrente nesta prática é devido a alguns fatores que também tornaram o data mining e a análise Bayesiana extremamente populares. O crescimento no volume e variedade de dados disponíveis, o processo computacional que é mais barato e mais poderoso, e o armazenamento com um custo mais reduzido representam alguns dos atrativos deste ramo.

Alguns exemplos da aplicação de machine learning em algumas empresas incluem veículos de condução autónoma; recomendações de plataformas online como Amazon e Netflix com base no comportamento dos utilizadores; sistemas de reconhecimento de voz como a SIRI e Cortana; a plataforma Paypal assente em algoritmos de machine learning para combater a fraude, analisando grandes quantidades de dados do cliente e avaliando o risco; o modelo da Uber que utiliza algoritmos para determinar hora de chegada e determinar localizações de  partida; mecanismos de deteção de SPAM na conta de e-mail; reconhecimento facial que ocorre em plataformas como o Facebook.a

Indústrias apostam em Machine Learning

A maioria das indústrias com grandes quantidades de dados já reconheceu o potencial desta tecnologia. A possibilidade de extração de insights permite às empresas obter uma vantagem competitiva e trabalhar de forma mais eficiente.

Serviços Financeiros

Tanto os bancos como as demais entidades financeiras estão a usar machine learning com dois propósitos: retirar insights valiosos dos dados e prevenir a fraude. Os insights identificam oportunidades de investimento adequadas aos perfis dos clientes, e no campo da fraude, são identificados clientes de alto-risco.

Para além disso, com esta tecnologia também se consegue influir o nível de satisfação do cliente. Recorrendo à análise da atividade do utilizador, as smart machines conseguem prever um possível fecho de conta antes dele ocorrer, por exemplo.

Saúde

As entidades de saúde podem capitalizar na junção entre IoT e análise de dados, para desenvolver melhores soluções para os pacientes. O aparecimento de wearables permite a aquisição de dados relativos à saúde dos pacientes, que por sua vez permite aos profissionais de saúde detetarem padrões relevantes ou situações de risco. Esta tecnologia permite, por isso, melhorar o diagnóstico e o tratamento.

Retalho

Hoje em dia é bastante notório o impato das smart machines na experiência do utilizador. O resultado é um serviço altamente personalizado que inclui recomendações baseadas no histórico de compra ou atividade online; melhoria no serviço de apoio ao cliente e sistemas de entregas, em que as máquinas decifram o significado dos emails dos utilizadores e notas de entregas de forma a priorizar tarefas e garantir a satisfação do cliente; rastrear mudanças de preços, identificando padrões nas flutuações de preços, permitindo estabelecer os mesmos de acordo com a procura. A capacidade de reunir dados, analisar e utilizar os mesmos para personalizar uma experiência de compra (ou implementar uma campanha de marketing) é o futuro da indústria de retalho, por exemplo.

Transporte

Analisar dados para identificar padrões e tendências é chave para a indústria de transporte, uma vez que o aumento de lucro é sintomático de rotas mais eficientes e da previsão de potenciais problemas. A análise de dados e os aspetos modelares de machine learning são ferramentas importantes para empresas de entregas e de transportes públicos poderem aumentar os seus dividendos.

As aplicações de machine learning permitem às empresas automatizar a análise e a interpretação das interações do negócio, retirando insights valiosos que permitem personalizar produtos e serviços, em última instância.  Esta aposta na transformação digital irá certamente traduzir-se num investimento que se revelará uma decisão lucrativa para o negócio.

A Xpand IT tem um portefólio de serviços completo na área de Machine Learning. Se pretender saber como pode colocar Machine Learning ao serviço do seu negócio e obter um verdadeiro valor acrescentado, nós ajudamos. Quer saber de que forma podemos ajudar o seu negócio? Entre em contato connosco aqui e retire o máximo proveito desta tecnologia!

Sílvia RaposoMachine Learning: aprender de forma autónoma

Leia mais em

Xpand IT Visionaries

Recomendados

Conheça as novidades, eventos e opinião dos mais reconhecidos experts
do universo de TI, nas áreas de Big Data, Business Intelligence,
Middleware e Mobile.